Vision Based Position Control for MAVs Using One Single Circular Landmark
نویسندگان
چکیده
This paper presents a real-time vision based algorithm for 5 degrees-offreedom pose estimation and set-point control for a Micro Aerial Vehicle (MAV). The camera is mounted on-board a quadrotor helicopter. Camera pose estimation is based on the appearance of two concentric circles which are used as landmark. We show that that by using a calibrated camera, conic sections, and the assumption that yaw is controlled independently, it is possible to determine the six degrees-offreedom pose of the MAV. First we show how to detect the landmark in the image frame. Then we present a geometric approach for camera pose estimation from the elliptic appearance of a circle in perspective projection. Using this information we are able to determine the pose of the vehicle. Finally, given a set point in the image frame we are able to control the quadrotor such that the feature appears in the respective target position. The performance of the proposed method is presented through experimental results. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n. 231855 (sFly: http://www.sfly.org). Daniel Eberli is currently Master student at the ETH Zurich. Davide Scaramuzza is currently senior researcher and team leader at the ETH Zurich. Stephan Weiss is currently PhD student at the ETH Zurich. Roland Siegwart is full professor at the ETH Zurich and head of the Autonomous Systems Lab. D. Eberli · D. Scaramuzza (B) · S. Weiss · R. Siegwart ETH Autonomous Systems Laboratory, 8092, Zurich, Switzerland URL: www.asl.ethz.ch e-mail: [email protected] D. Eberli e-mail: [email protected] S. Weiss e-mail: [email protected] R. Siegwart e-mail: [email protected] 496 J Intell Robot Syst (2011) 61:495–512
منابع مشابه
Vision based Position Control for MAVs using one single Artificial Landmark
This paper presents a real-time vision based algorithm for 5 degrees-offreedom pose estimation and set-point control for a Micro Aerial Vehicle (MAV). The camera is mounted on-board a quadrotor helicopter. Camera pose estimation is based on the appearance of two concentric circles which are used as landmark. We show that that by using a calibrated camera, conic sections, and the assumption that...
متن کاملVisual Torch Position Control Using Fuzzy-Servoing Controller for Arc Welding Process
In this paper, we propose a fuzzy-servoing controller method for automatic welding. The proposed method uses a vision based arc tracking to find the initial points of the weld seam and to track them without a prior knowledge. Due to a serious melt down in the weld pool during the welding process, the method requires to control the welding torch in two directions, up-down and left-right directio...
متن کاملAutonomous landing and ingress of micro-air-vehicles in urban environments based on monocular vision
Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions...
متن کاملComparison of Different Targets Used in Augmented Reality Applications in Ubiquitous GIS
Drilling requires accurate information about locations of underground infrastructures or it can cause serious damages. Augmented Reality (AR) as a technology in Ubiquitous GIS (UBIGIS) can be used to visualize underground infrastructures on smartphones. Since smartphone’s sensors do not provide such accuracy, another approaches should be applied. Vision based computer vision systems are well kn...
متن کاملBall Trajectory Estimation and Robot Control to Reach the Ball Using Single Camera
In robotics research, catching a projectile object with a robotic system is one of the challenging problems. The outcome of these researches can be used in a wide range of applications such as video surveillance systems, analysis of sports videos, monitoring programs for human activities, and human-machine interactions. In this paper, we propose a new vision-based algorithm to estimate the traj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 61 شماره
صفحات -
تاریخ انتشار 2011